
Understanding Memory Resource Management
in VMware® ESX™ Server

W H I T E P A P E R

2

VMware white paper

Table of Contents

1. Introduction. 3

2. eSX Memory Management Overview . 4
2.1 terminology. .4

2.2 Memory Virtualization Basics .4

2.3 Memory Management Basics in eSX. .5

3. Memory reclamation in eSX. 6
3.1 Motivation .6

3.2 transparent page Sharing (tpS) .7

3.3 Ballooning .8

3.4 hypervisor Swapping. .9

3.5 when to reclaim host Memory . 10

4. eSX Memory allocation Management for Multiple Virtual Machines11

5. Performance evaluation .13
5.1 experimental environment . 13

5.2 transparent page Sharing performance . 14

5.3 Ballooning vs. Swapping. 14

5.3.1 Linux Kernel Compile . 15

5.3.2 Oracle/Swingbench . 16

5.3.3 SpeCjbb . 17

5.3.4 Microsoft exchange Server 2007 . 18

6. Best Practices .19

7. references .19

3

VMware white paper

1. Introduction
VMware® ESX™ is a hypervisor designed to efficiently manage hardware resources including CPU, memory, storage, and network among
multiple concurrent virtual machines. This paper describes the basic memory management concepts in ESX, the configuration
options available, and provides results to show the performance impact of these options. The focus of this paper is in presenting the
fundamental concepts of these options. More details can be found in “Memory Resource Management in VMware ESX Server” [1].

ESX uses high-level resource management policies to compute a target memory allocation for each virtual machine (VM) based on
the current system load and parameter settings for the virtual machine (shares, reservation, and limit [2]). The computed target
allocation is used to guide the dynamic adjustment of the memory allocation for each virtual machine. In the cases where host
memory is overcommitted, the target allocations are still achieved by invoking several lower-level mechanisms to reclaim memory
from virtual machines.

This paper assumes a pure virtualization environment in which the guest operating system running inside the virtual machine is not
modified to facilitate virtualization (often referred to as paravirtualization). Knowledge of ESX architecture will help you understand
the concepts presented in this paper.

In order to quickly monitor virtual machine memory usage, the VMware vSphere™ Client exposes two memory statistics in the
resource summary: Consumed Host Memory and Active Guest Memory.

Figure 1: Host and Guest Memory usage in vSphere Client

Consumed Host Memory usage is defined as the amount of host memory that is allocated to the virtual machine, Active Guest
Memory is defined as the amount of guest memory that is currently being used by the guest operating system and its applications.
These two statistics are quite useful for analyzing the memory status of the virtual machine and providing hints to address potential
performance issues.

This paper helps answer these questions:

•	 Why	is	the	Consumed	Host	Memory	so	high?

•	 Why	is	the	Consumed	Host	Memory	usage	sometimes	much	larger	than	the	Active	Guest	Memory?

•	 Why	is	the	Active	Guest	Memory	different	from	what	is	seen	inside	the	guest	operating	system?	

These questions cannot be easily answered without understanding the basic memory management concepts in ESX. Understanding
how ESX manages memory will also make the performance implications of changing ESX memory management parameters clearer.

The vSphere Client can also display performance charts for the following memory statistics: active, shared, consumed, granted,
overhead, balloon, swapped, swapped in rate, and swapped-out rate. A complete discussion about these metrics can be found in
“Memory Performance Chart Metrics in the vSphere Client” [3] and “VirtualCenter Memory Statistics Definitions” [4].

The rest of the paper is organized as follows. Section 2 presents the overview of ESX memory management concepts. Section 3
discusses the memory reclamation techniques used in ESX. Section 4 describes how ESX allocates host memory to virtual machines
when the host is under memory pressure. Section 5	presents	and	discusses	the	performance	results	for	different	memory	reclamation	
techniques. Finally, Section 6 discusses the best practices with respect to host and guest memory usage.

4

VMware white paper

2. eSX Memory Management Overview
2.1 Terminology
The following terminology is used throughout this paper.

•	 Host physical memory1 refers to the memory that is visible to the hypervisor as available on the system.

•	 Guest physical memory refers to the memory that is visible to the guest operating system running in the virtual machine.

•	 Guest virtual memory refers to a continuous virtual address space presented by the guest operating system to applications. It is
the memory that is visible to the applications running inside the virtual machine.

•	 Guest	physical	memory	is	backed by host physical memory, which means the hypervisor provides a mapping from the guest to
the host memory.

•	 The	memory	transfer	between	the	guest	physical	memory	and	the	guest	swap	device	is	referred	to	as	guest	level	paging and is
driven by the guest operating system. The memory transfer between guest physical memory and the host swap device is referred
to as hypervisor swapping, which is driven by the hypervisor.

2.2 Memory Virtualization Basics
Virtual memory is a well-known technique used in most general-purpose operating systems, and almost all modern processors have
hardware to support it. Virtual memory creates a uniform virtual address space for applications and allows the operating system and
hardware to handle the address translation between the virtual address space and the physical address space. This technique not only
simplifies the programmer’s work, but also adapts the execution environment to support large address spaces, process protection,
file mapping, and swapping in modern computer systems.

When	running	a	virtual	machine,	the	hypervisor	creates	a	contiguous	addressable	memory	space	for	the	virtual	machine.	This	
memory space has the same properties as the virtual address space presented to the applications by the guest operating system.
This allows the hypervisor to run multiple virtual machines simultaneously while protecting the memory of each virtual machine
from being accessed by others. Therefore, from the view of the application running inside the virtual machine, the hypervisor adds an
extra level of address translation that maps the guest physical address to the host physical address. As a result, there are three virtual
memory layers in ESX: guest virtual memory, guest physical memory, and host physical memory. Their relationships are illustrated in
Figure 2 (a).

Figure 2: Virtual memory levels (a) and memory address translation (b) in ESX

(a)

VM

(b)

Guest virtual
memory

Application

Operating
System

Hypervisor
Hypervisor

Guest physical
memory

Host physical
memory

Guest OS
Page Tables

guest virtual
-to-

guest physical
Shadow Page

Tables
guest virtual

-to-
guest physical

pmap
guest physical

-to-
host physical

As shown in Figure 2 (b), in ESX, the address translation between guest physical memory and host physical memory is maintained
by the hypervisor using a physical memory mapping data structure, or pmap, for each virtual machine. The hypervisor intercepts
all	virtual	machine	instructions	that	manipulate	the	hardware	translation	lookaside	buffer	(TLB)	contents	or	guest	operating	system	
page	tables,	which	contain	the	virtual	to	physical	address	mapping.	The	actual	hardware	TLB	state	is	updated	based	on	the	separate	
shadow page tables, which contain the guest virtual to host physical address mapping. The shadow page tables maintain consistency
with the guest virtual to guest physical address mapping in the guest page tables and the guest physical to host physical address

1 The terms host physical memory and host memory are used interchangeably in this paper. They are also equivalent to the term machine memory used in [1].

5

VMware white paper

mapping in the pmap data structure. This approach removes the virtualization overhead for the virtual machine’s normal memory
accesses	because	the	hardware	TLB	will	cache	the	direct	guest	virtual	to	host	physical	memory	address	translations	read	from	the	
shadow page tables. Note that the extra level of guest physical to host physical memory indirection is extremely powerful in the
virtualization environment. For example, ESX can easily remap a virtual machine’s host physical memory to files or other devices in a
manner that is completely transparent to the virtual machine.

Recently, some new generation CPUs, such as third generation AMD Opteron and Intel Xeon 5500 series processors, have provided
hardware support for memory virtualization by using two layers of page tables in hardware. One layer stores the guest virtual to
guest physical memory address translation, and the other layer stores the guest physical to host physical memory address translation.
These two page tables are synchronized using processor hardware. Hardware support memory virtualization eliminates the overhead
required to keep shadow page tables in synchronization with guest page tables in software memory virtualization. For more
information about hardware-assisted memory virtualization, see “Performance Evaluation of Intel EPT Hardware Assist” [5] and
“Performance Evaluation of AMD RVI Hardware Assist.” [6]

2.3 Memory Management Basics in ESX
Prior to talking about how ESX manages memory for virtual machines, it is useful to first understand how the application, guest
operating system, hypervisor, and virtual machine manage memory at their respective layers.

•	 An	application	starts	and	uses	the	interfaces	provided	by	the	operating	system	to	explicitly	allocate	or	deallocate	the	virtual	
memory during the execution.

•	 In	a	non-virtual	environment,	the	operating	system	assumes	it	owns	all	physical	memory	in	the	system.	The	hardware	does	not	
provide interfaces for the operating system to explicitly “allocate” or “free” physical memory. The operating system establishes
the	definitions	of	“allocated”	or	“free”	physical	memory.	Different	operating	systems	have	different	implementations	to	realize	this	
abstraction. One example is that the operating system maintains an “allocated” list and a “free” list, so whether or not a physical
page is free depends on which list the page currently resides in.

•	 Because	a	virtual	machine	runs	an	operating	system	and	several	applications,	the	virtual	machine	memory	management	properties	
combine	both	application	and	operating	system	memory	management	properties.	Like	an	application,	when	a	virtual	machine	
first	starts,	it	has	no	pre-allocated	physical	memory.	Like	an	operating	system,	the	virtual	machine	cannot	explicitly	allocate	host	
physical memory through any standard interfaces. The hypervisor also creates the definitions of “allocated” and “free” host memory
in its own data structures. The hypervisor intercepts the virtual machine’s memory accesses and allocates host physical memory for
the virtual machine on its first access to the memory. In order to avoid information leaking among virtual machines, the
hypervisor always writes zeroes to the host physical memory before assigning it to a virtual machine.

•	 Virtual	machine	memory	deallocation	acts	just	like	an	operating	system,	such	that	the	guest	operating	system	frees	a	piece	of	
physical memory by adding these memory page numbers to the guest free list, but the data of the “freed” memory may not be
modified at all. As a result, when a particular piece of guest physical memory is freed, the mapped host physical memory will
usually not change its state and only the guest free list will be changed.

The hypervisor knows when to allocate host physical memory for a virtual machine because the first memory access from the virtual
machine to a host physical memory will cause a page fault that can be easily captured by the hypervisor. However, it is difficult for the
hypervisor to know when to free host physical memory upon virtual machine memory deallocation because the guest operating system
free list is generally not publicly accessible. Hence, the hypervisor cannot easily find out the location of the free list and monitor its changes.

Although the hypervisor cannot reclaim host memory when the operating system frees guest physical memory, this does not mean
that the host memory, no matter how large it is, will be used up by a virtual machine when the virtual machine repeatedly allocates
and frees memory. This is because the hypervisor does not allocate host physical memory on every virtual machine’s memory allocation.
It only allocates host physical memory when the virtual machine touches the physical memory that it has never touched before. If a virtual
machine frequently allocates and frees memory, presumably the same guest physical memory is being allocated and freed again
and again. Therefore, the hypervisor just allocates host physical memory for the first memory allocation and then the guest reuses

6

VMware white paper

the same host physical memory for the rest of allocations. That is, if a virtual machine’s entire guest physical memory (configured
memory) has been backed by the host physical memory, the hypervisor does not need to allocate any host physical memory for this
virtual machine any more. This means that the following always holds true:

VM’s host memory usage <= VM’s guest memory size + VM’s overhead memory

Here, the virtual machine’s overhead memory is the extra host memory needed by the hypervisor for various virtualization data structures
besides the memory allocated to the virtual machine. Its size depends on the number of virtual CPUs and the configured virtual
machine memory size. For more information, see the vSphere Resource Management Guide [2].

3. Memory reclamation in eSX
3.1 Motivation
According to the above equation if the hypervisor cannot reclaim host physical memory upon virtual machine memory deallocation,
it must reserve enough host physical memory to back all virtual machine’s guest physical memory (plus their overhead memory) in
order to prevent any virtual machine from running out of host physical memory. This means that memory overcommitment cannot
be supported. The concept of memory overcommitment is fairly simple: host memory is overcommitted when the total amount
of guest physical memory of the running virtual machines is larger than the amount of actual host memory. ESX supports memory
overcommitment from the very first version, due to two important benefits it provides:

•	 Higher	memory	utilization:	With	memory	overcommitment,	ESX	ensures	that	host	memory	is	consumed	by	active	guest	memory	
as much as possible. Typically, some virtual machines may be lightly loaded compared to others. Their memory may be used
infrequently, so for much of the time their memory will sit idle. Memory overcommitment allows the hypervisor to use memory
reclamation techniques to take the inactive or unused host physical memory away from the idle virtual machines and give it to
other virtual machines that will actively use it.

•	 Higher	consolidation	ratio:	With	memory	overcommitment,	each	virtual	machine	has	a	smaller	footprint	in	host	memory	usage,	
making it possible to fit more virtual machines on the host while still achieving good performance for all virtual machines. For
example, as shown in Figure 3, you can enable a host with 4G host physical memory to run three virtual machines with 2G guest
physical	memory	each.	Without	memory	overcommitment,	only	one	virtual	machine	can	be	run	because	the	hypervisor	cannot	
reserve host memory for more than one virtual machine, considering that each virtual machine has overhead memory.

Figure 3: Memory overcommitment in ESX.

Guest
memory

VM0 (2G)

Hypervisor
(4G)

VM1 (2G) VM2 (2G)

Guest
memory

Host
memory

Guest
memory

In	order	to	effectively	support	memory	overcommitment,	the	hypervisor	must	provide	efficient	host	memory	reclamation	
techniques. ESX leverages several innovative techniques to support virtual machine memory reclamation. These techniques are
transparent page sharing, ballooning, and host swapping.

7

VMware white paper

3.2 Transparent Page Sharing (TPS)
When	multiple	virtual	machines	are	running,	some	of	them	may	have	identical	sets	of	memory	content.	This	presents	opportunities	
for sharing memory across virtual machines (as well as sharing within a single virtual machine). For example, several virtual machines
may	be	running	the	same	guest	operating	system,	have	the	same	applications,	or	contain	the	same	user	data.	With	page	sharing,	
the hypervisor can reclaim the redundant copies and only keep one copy, which is shared by multiple virtual machines in the host
physical memory. As a result, the total virtual machine host memory consumption is reduced and a higher level of memory
overcommitment is possible.

In ESX, the redundant page copies are identified by their contents. This means that pages with identical content can be shared
regardless of when, where, and how those contents are generated. ESX scans the content of guest physical memory for sharing
opportunities. Instead of comparing each byte of a candidate guest physical page to other pages, an action that is prohibitively
expensive, ESX uses hashing to identify potentially identical pages. The detailed algorithm is illustrated in Figure 4.

Figure 4: Content based page sharing in ESX

VM0

Hypervisor

VM1 VM2
“A”

Hash
Function

Hash
Table

Hash
Value:

Host
memory

Page
Content
Page

Content

A

B

A hash value is generated based on the candidate guest physical page’s content. The hash value is then used as a key to look up a
global hash table, in which each entry records a hash value and the physical page number of a shared page. If the hash value of the
candidate guest physical page matches an existing entry, a full comparison of the page contents is performed to exclude a false
match. Once the candidate guest physical page’s content is confirmed to match the content of an existing shared host physical page,
the guest physical to host physical mapping of the candidate guest physical page is changed to the shared host physical page, and
the redundant host memory copy (the page pointed to by the dashed arrow in Figure 4) is reclaimed. This remapping is invisible to
the	virtual	machine	and	inaccessible	to	the	guest	operating	sytem.		Because	of	this	invisibility,	sensitive	information	cannot	be	leaked	
from one virtual machine to another.

A	standard	copy-on-write	(CoW)	technique	is	used	to	handle	writes	to	the	shared	host	physical	pages.	Any	attempt	to	write	to	the	
shared pages will generate a minor page fault. In the page fault handler, the hypervisor will transparently create a private copy of the
page	for	the	virtual	machine	and	remap	to	this	private	copy	the	virtual	machines	affecting	the	guest	physical	page.	In	this	way,	virtual	
machines can safely modify the shared pages without disrupting other virtual machines sharing that memory. Note that writing to a
shared page does incur overhead compared to writing to non-shared pages due to the extra work performed in the page fault handler.

8

VMware white paper

In VMware ESX, the hypervisor scans the guest physical pages randomly with a base scan rate specified by Mem.ShareScanTime,
which specifies the desired time to scan the virtual machine’s entire guest memory. The maximum number of scanned pages per
second in the host and the maximum number of per-virtual machine scanned pages, (that is, Mem.ShareScanGHz and
Mem.ShareRateMax respectively) can also be specified in ESX advanced settings. An example is shown in Figure 5.

Figure 5: Configure page sharing in vSphere Client

The default values of these three parameters are carefully chosen to provide sufficient sharing opportunities while keeping the CPU
overhead negligible. In fact, ESX intelligently adjusts the page scan rate based on the amount of current shared pages. If the virtual
machine’s page sharing opportunity seems to be low, the page scan rate will be reduced accordingly and vice versa. This optimization
further mitigates the overhead of page sharing.

3.3 Ballooning
Ballooning	is	a	completely	different	memory	reclamation	technique	compared	to	page	sharing.	Before	describing	the	technique,	
it is helpful to review why the hypervisor needs to reclaim memory from virtual machines. Due to the virtual machine’s isolation,
the guest operating system is not aware that it is running inside a virtual machine and is not aware of the states of other virtual
machines	on	the	same	host.	When	the	hypervisor	runs	multiple	virtual	machines	and	the	total	amount	of	the	free	host	memory	
becomes low, none of the virtual machines will free guest physical memory because the guest operating system cannot detect the
host’s	memory	shortage.	Ballooning	makes	the	guest	operating	system	aware	of	the	low	memory	status	of	the	host.

In ESX, a balloon driver is loaded into the guest operating system as a pseudo-device driver. It has no external interfaces to the
guest operating system and communicates with the hypervisor through a private channel. The balloon driver polls the hypervisor
to obtain a target balloon size. If the hypervisor needs to reclaim virtual machine memory, it sets a proper target balloon size for the
balloon driver, making it “inflate” by allocating guest physical pages within the virtual machine. Figure 6 illustrates the process of the
balloon inflating.

In Figure 6 (a), four guest physical pages are mapped in the host physical memory. Two of the pages are used by the guest application
and the other two pages (marked by stars) are in the guest operating system free list. Note that since the hypervisor cannot identify
the two pages in the guest free list, it cannot reclaim the host physical pages that are backing them. Assuming the hypervisor needs
to reclaim two pages from the virtual machine, it will set the target balloon size to two pages. After obtaining the target balloon
size, the balloon driver allocates two guest physical pages inside the virtual machine and pins them, as shown in Figure 6 (b). Here,
“pinning” is achieved through the guest operating system interface, which ensures that the pinned pages cannot be paged out to
disk under any circumstances. Once the memory is allocated, the balloon driver notifies the hypervisor the page numbers of the

9

VMware white paper

pinned guest physical memory so that the hypervisor can reclaim the host physical pages that are backing them. In Figure 6 (b) , dashed
arrows point at these pages. The hypervisor can safely reclaim this host physical memory because neither the balloon driver nor the
guest operating system relies on the contents of these pages. This means that no processes in the virtual machine will intentionally
access those pages to read/write any values. Thus, the hypervisor does not need to allocate host physical memory to store the page
contents. If any of these pages are re-accessed by the virtual machine for some reason, the hypervisor will treat it as normal virtual
machine	memory	allocation	and	allocate	a	new	host	physical	page	for	the	virtual	machine.	When	the	hypervisor	decides	to	deflate	
the balloon — by setting a smaller target balloon size — the balloon driver deallocates the pinned guest physical memory, which
releases it for the guest’s applications.

Figure 6: Inflating the balloon in a virtual machine ESX

(a)

VM

Balloon

In�ating

Balloon

OS

Hypervisor

(b)

VM

AppApp Balloon

OS

Hypervisor

Typically,	the	hypervisor	inflates	the	virtual	machine	balloon	when	it	is	under	memory	pressure.	By	inflating	the	balloon,	a	virtual	
machine consumes less physical memory on the host, but more physical memory inside the guest. As a result, the hypervisor
offloads some of its memory overload to the guest operating system while slightly loading the virtual machine. That is, the hypervisor
transfers	the	memory	pressure	from	the	host	to	the	virtual	machine.	Ballooning	induces	guest	memory	pressure.	In	response,	the	
balloon driver allocates and pins guest physical memory. The guest operating system determines if it needs to page out guest
physical memory to satisfy the balloon driver’s allocation requests. If the virtual machine has plenty of free guest physical memory,
inflating the balloon will induce no paging and will not impact guest performance. In this case, as illustrated in Figure 6, the balloon
driver allocates the free guest physical memory from the guest free list. Hence, guest-level paging is not necessary. However, if the
guest is already under memory pressure, the guest operating system decides which guest physical pages to be paged out to the
virtual swap device in order to satisfy the balloon driver’s allocation requests. The genius of ballooning is that it allows the guest
operating system to intelligently make the hard decision about which pages to be paged out without the hypervisor’s involvement.

For ballooning to work as intended, the guest operating system must install and enable the balloon driver. The guest operating
system	must	have	sufficient	virtual	swap	space	configured	for	guest	paging	to	be	possible.	Ballooning	might	not	reclaim	memory	
quickly enough to satisfy host memory demands. In addition, the upper bound of the target balloon size may be imposed by various
guest operating system limitations.

3.4 Hypervisor Swapping
As	a	last	effort	to	manage	excessively	overcommitted	physical	memory,	the	hypervisor	will	swap	the	virtual	machine’s	memory.	
Transparent page sharing has very little impact to performance and, as stated earlier, ballooning will only induce guest paging if the
guest operating system is short of memory.

In the cases where ballooning and page sharing are not sufficient to reclaim memory, ESX employs hypervisor swapping to reclaim
memory. To support this, when starting a virtual machine, the hypervisor creates a separate swap file for the virtual machine. Then, if
necessary, the hypervisor can directly swap out guest physical memory to the swap file, which frees host physical memory for other
virtual machines.

10

VMware white paper

Besides	the	limitation	on	the	reclaimed	memory	size,	both	page	sharing	and	ballooning	take	time	to	reclaim	memory.	The	page-
sharing	speed	depends	on	the	page	scan	rate	and	the	sharing	opportunity.	Ballooning	speed	relies	on	the	guest	operating	system’s	
response time for memory allocation.

In contrast, hypervisor swapping is a guaranteed technique to reclaim a specific amount of memory within a specific amount of time.
However, hypervisor swapping may severely penalize guest performance. This occurs when the hypervisor has no knowledge about
which guest physical pages should be swapped out, and the swapping may cause unintended interactions with the native memory
management policies in the guest operating system. For example, the guest operating system will never page out its kernel pages
since those pages are critical to ensure guest kernel performance. The hypervisor, however, cannot identify those guest kernel pages,
so	it	may	swap	them	out.	In	addition,	the	guest	operating	system	reclaims	the	clean	buffer	pages	by	dropping	them	[7]. Again, since
the	hypervisor	cannot	identify	the	clean	guest	buffer	pages,	it	will	unnecessarily	swap	them	out	to	the	hypervisor	swap	device	in	
order to reclaim the mapped host physical memory.

Another known issue is the double paging problem. Assuming the hypervisor swaps out a guest physical page, it is possible that the
guest operating system pages out the same physical page, if the guest is also under memory pressure. This causes the page to be
swapped in from the hypervisor swap device and immediately to be paged out to the virtual machine’s virtual swap device. Note that
it is impossible to find an algorithm to handle all these pathological cases properly. ESX attempts to mitigate the impact of interacting
with guest operating system memory management by randomly selecting the swapped guest physical pages. Due to the potential
high performance penalty, hypervisor swapping is the last resort to reclaim memory from a virtual machine.

3.5 When to Reclaim Host Memory2
ESX maintains four host free memory states: high, soft, hard, and low, which are reflected by four thresholds: 6 percent, 4 percent,
2 percent, and 1 percent of host memory respectively. Figure 7 shows how the host free memory state is reported in esxtop.

By	default,	ESX	enables	page	sharing	since	it	opportunistically	“frees”	host	memory	with	little	overhead.	When	to	use	ballooning	or	
swapping to reclaim host memory is largely determined by the current host free memory state.

Figure 7: Host free memory state in esxtop

In the high	state,	the	aggregate	virtual	machine	guest	memory	usage	is	smaller	than	the	host	memory	size.	Whether	or	not	host	
memory is overcommitted, the hypervisor will not reclaim memory through ballooning or swapping. (This is true only when the
virtual machine memory limit is not set.)

If host free memory drops towards the soft	threshold,	the	hypervisor	starts	to	reclaim	memory	using	ballooning.	Ballooning	happens	
before free memory actually reaches the soft threshold because it takes time for the balloon driver to allocate and pin guest physical
memory. Usually, the balloon driver is able to reclaim memory in a timely fashion so that the host free memory stays above the soft
threshold.

If ballooning is not sufficient to reclaim memory or the host free memory drops towards the hard threshold, the hypervisor starts
to use swapping in addition to using ballooning. Through swapping, the hypervisor should be able to quickly reclaim memory and
bring the host memory state back to the soft state.

2 The discussions and conclusions made in this section may not be valid when the user specifies a resource pool for virtual machines. For example, if the resource pool that contains a virtual
machine is specified as a small memory limit, ballooning or hypervisor swapping occur for the virtual machine even when the host free memory is in the high state. The detailed explanation of
resource pool is out of the topic of this paper. Most of the details can be found in the “Managing Resource Pools” section of the vSphere Resource Management Guide [2].

11

VMware white paper

In a rare case where host free memory drops below the low threshold, the hypervisor continues to reclaim memory through swapping,
and additionally blocks the execution of all virtual machiens that consume more memory than their target memory allocations.

In certain scenarios, host memory reclamation happens regardless of the current host free memory state. For example, even if host
free memory is in the high state, memory reclamation is still mandatory when a virtual machine’s memory usage exceeds its specified
memory limit. If this happens, the hypervisor will employ ballooning and, if necessary, swapping to reclaim memory from the virtual
machine until the virtual machines host memory usage falls back to its specified limit.

4. eSX Memory allocation Management for Multiple Virtual Machines
This section describes how ESX allocates host memory to multiple virtual machines, especially when the host memory is overcommitted.
ESX employs a share-based allocation algorithm to achieve efficient memory utilization while guaranteeing the performance isolation
of memory. [1]

ESX provides three configurable parameters to control the host memory allocation for a virtual machine: Shares, Reservation, and
Limit. The interface in the vSphere Client is shown in Figure 8.

Figure 8: Configure virtual machine memory allocation

Limit	is	the	upper	bound	of	the	amount	of	host	physical	memory	allocated	for	a	virtual	machine.	By	default,	limit	is	set	to	unlimited,	
which means a virtual machine’s maximum allocated host physical memory is its specified virtual machine memory size (according
to equation 1). Reservation is a guaranteed lower bound on the amount of host physical memory that host reserves for a virtual
machine even when host memory is overcommitted. Memory Shares entitle a virtual machine to a fraction of available host physical
memory, based on a proportional-share allocation policy. For example, a virtual machine with twice as many shares as another is
generally entitled to consume twice as much memory, subject to its limit and reservation constraints.

12

VMware white paper

Periodically, ESX computes a memory allocation target for each virtual machine based on its share-based entitlement, its estimated
working set size, and its limit and reservation3. Here, a virtual machine’s working set size is defined as the amount of guest physical
memory	that	is	actively	being	used.	When	host	memory	is	undercommitted,	a	virtual	machine’s	memory	allocation	target	is	the	
virtual machine’s consumed host physical memory size with headroom. The maximum memory allocation target is:

Maximum allocation target = min{ VM’s memory size, VM’s limit }

When	host	memory	is	overcommitted,	a	virtual	machine’s	allocation	target	is	somewhere	between	its	specified	reservation	and	
specified limit depending on the virtual machine’s shares and the system load. If a virtual machine’s host memory usage is larger
than the computed allocation target, which typically happens in memory overcommitment cases, ESX employs a ballooning or
swapping	mechanism	to	reclaim	memory	from	the	virtual	machine	in	order	to	reach	the	allocation	target.	Whether	to	use	ballooning	or	
to use swapping is determined by the current host free memory state as described in previous sections.

Shares	play	an	important	role	in	determining	the	allocation	targets	when	memory	is	overcommitted.	When	the	hypervisor	needs	
memory, it reclaims memory from the virtual machine that owns the fewest shares-per-allocated page.

A significant limitation of the pure proportional-share algorithm is that it does not incorporate any information about the actual
memory usage of the virtual machine. As a result, some idle virtual machines with high shares can retain idle memory unproductively,
while	some	active	virtual	machines	with	fewer	shares	suffer	from	the	lack	of	memory.

ESX resolves this problem by estimating a virtual machine’s working set size and charging a virtual machine more for the idle memory
than for the actively used memory through an idle tax. [1] A virtual machine’s shares-per-allocated page ratio is adjusted to be lower
if a fraction of the virtual machine’s memory is idle. Hence, memory will be reclaimed preferentially from the virtual machines that
are not fully utilizing their allocated memory. The detailed algorithm can be found in Memory Resource Management in VMware
ESX Server [1].	The	effectiveness	of	this	algorithm	relies	on	the	accurate	estimation	of	the	virtual	machine’s	working	set	size.	ESX	uses	
a statistical sampling approach to estimate the aggregate virtual machine working set size without any guest involvement. At the
beginning of each sampling period, the hypervisor intentionally invalidates several randomly selected guest physical pages and
starts to monitor the guest accesses to them. At the end of the sampling period, the fraction of actively used memory can be estimated
as the fraction of the invalidated pages that are re-accessed by the guest during the epoch. The detailed algorithm can also be found
in Memory Resource Management in VMware ESX Server [1].	By	default,	ESX	samples	100	guest	physical	pages	for	each	60-second	
period. The sampling rate can be adjusted by changing Mem.SamplePeriod in ESX advanced settings.

By	overpricing	the	idle	memory	and	effective	working	set	estimation,	ESX	is	able	to	efficiently	allocate	host	memory	under	memory	
overcommitment while maintaining the proportional-share based allocation.

3 If a virtual machine is in a resource pool, the resource pool configuration is also taken into account when calculating the memory allocation target for the virtual machine. A detailed explanation of the resource pool is out of the topic

of this paper. Most of the details can be found in the “Managing Resource Pools” section in the vSphere Resource Management Guide [2].

13

VMware white paper

5. Performance evaluation
In this section, the performance of ESX memory reclamation techniques is evaluated. The purpose is to help users understand how
individual techniques impact the performance of various applications.

5.1 Experimental Environment
ESX RC build on a Dell PowerEdge 6950 system was installed and experiments were conducted against four workloads. The system
hardware configurations and workload descriptions are summarized in Table 1 and Table 2 respectively.

Table 1. Server configurations

Processors type: 4 socket dual-core aMD Opteron 8222Se processors

Frequency: 3Ghz

Last level cache: 1MB private L2 cache per core

FSB: 1Ghz

BIOS Version: 1.1.2

Virtualization technology: enabled

Demand-based power management: Disabled

DDr2 Memory Size: 64G

Speed: 667Mhz

SaN Storage LUN size: 1tB

protocol: Fibre Channel

Table 2. Workload descriptions

SPeCjbb2005 heap size: 2.5GB

Number of warehouse: 1

runtime: 10 minutes

Number of runs: 3

VM configuration: 1 vCpU, 4GB memory

Kernel Compile Linux kernel version: 2.6.17

Command: “make –j 1 bzimage > /dev/null”

Number of runs: 4

VM configuration: 1 vCpU, 512MB memory

Swingbench Database: Oracle 11g

Functional benchmark: Order entry

Number of users: 30

runtime: 20 minutes

Number of runs: 3

VM configuration: 4 vCpUs, 4G memory

exchange 2007 Server: Microsoft exchange 2007

Loadgen client: 2000 heavy exchange users

VM configuration: 4 vCpUs, 12G memory

The guest operating system running inside the SPECjbb, kernel compile, and Swingbench virtual machines was 64-bit Red Hat
Enterprise	Linux	5.2	Server.	The	guest	operating	system	running	inside	the	Exchange	virtual	machine	was	Windows	Server	2008.	
For SPECjbb2005 and Swingbench, the throughput was measured by calculating the number of transactions per second. For kernel
compile, the performance was measured by calculating the inverse of the compilation time. For Exchange, the performance was
measured using the average Remote Procedure Call (RPC) latency. In addition, for Swingbench and Exchange, the client applications
were installed in a separate native machine.

14

VMware white paper

5.2 Transparent Page Sharing Performance
In this experiment, two instances of workloads were run. The overall performance of workloads with page sharing enabled to those
with page sharing disabled were compared. There was a focus on evaluating the overhead of page scanning. Since the page scan rate
(number of scanned pages per second) is largely determined by the Mem.ShareScanTime, in addition to the default 60 minutes, the
minimal Mem.ShareScanTime of 10 minutes was tested, which potentially introduces the highest page scanning overhead.

Figure 9: Performance impact of transparent page sharing

0.9

0.92

0.96

0.94

0.98

1.00

1.02

1.04

1.000

0.994
0.998 0.998

1.002

0.991

Pshare DefaultPshare O� Pshare (ShareScanTime 10)

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

SPECjbb Kernel Compile Swingbench

Figure 9 confirms that enabling page sharing introduces a negligible performance overhead in the default setting and
only <1 percent overhead when Mem.ShareScanTime is 10 minutes for all workloads.

Page sharing sometimes improves performance because the virtual machine’s host memory footprint is reduced so that it fits the
processor cache better.

Besides	page	scanning,	breaking	CoW	pages	is	another	source	of	page	sharing.	Unfortunately,	such	overhead	is	highly	application	
dependent	and	it	is	difficult	to	evaluate	it	through	configurable	options.	Therefore,	the	overhead	of	breaking	CoW	pages	was	omitted	
in this experiment.

5.3 Ballooning vs. Swapping
In the following experiments, VM memory reclamation was enforced by changing each virtual machine’s memory limit value from
the	default	unlimited	to	values	that	are	smaller	than	the	configured	virtual	machine	memory	size.	Page	sharing	was	turned	off	to	
isolate the performance impact of ballooning or swapping. Since the host memory is much larger than the virtual machine memory
size, the host free memory is always in the high state. Hence, by default, ESX only uses ballooning to reclaim memory. The balloon
driver	was	turned	off	to	obtain	the	performance	of	using	swapping	only.	The	ballooned	and	swapped	memory	sizes	were	also	
collected when the virtual machine ran steadily.

15

VMware white paper

5.3.1 Linux Kernel Compile
Figure 10	presents	the	throughput	of	the	kernel	compile	workload	with	different	memory	limits	when	using	ballooning	or	swapping.	
This	experiment	was	contrived	to	use	only	ballooning	or	swapping,	not	both.	While	this	case	will	not	often	occur	in	production	
environments, it shows the performance penalty due to either technology on its own. The throughput is normalized to the case
where virtual machine memory is not reclaimed.

Figure 10: Performance of kernel compile when using the ballooning vs. the swapping

0

0.2

0.6

0.4

0.8

1.0

1.2

0

100

300

200

400

500

600

Ballooned size Swapped size Throughout (Balloon only)

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Ba
llo

on
ed

/S
w

ap
pe

d
M

em
or

y
(M

B)
Memory limit (MB)

512 448 384 320 256 192 128

Throughput (Swapping only)

By	using	ballooning,	the	kernel	compile	virtual	machine	only	suffers	from	3	percent	throughput	loss	even	when	the	memory	limit	
is	as	low	as	128MB	(1/4	of	the	configured	virtual	machine	memory	size).	This	is	because	the	kernel	compile	workload	has	very	little	
memory	reuse	and	most	of	the	guest	physical	memory	is	used	as	buffer	caches	for	the	kernel	source	files.	With	ballooning,	the	guest	
operating	system	reclaims	guest	physical	memory	upon	the	balloon	driver’s	allocation	request	by	dropping	the	buffer	pages	instead	
of	paging	them	out	to	the	guest	virtual	swap	device.	Because	dropped	buffer	pages	are	not	reused	frequently,	the	performance	
impact of using ballooning is trivial.

However,	with	hypervisor	swapping,	the	selected	guest	buffer	pages	are	unnecessarily	swapped	out	to	the	host	swap	device	and	
some guest kernel pages are swapped out occasionally, making the performance of the virtual machine degrade when memory
limit	decreases.	When	the	memory	limit	is	128MB,	the	throughput	loss	is	about	34	percent	in	the	swapping	case.	Balloon	inflation	is	a	
better approach to memory reclamation from a performance perspective.

Figure 10, illustrates that as memory limit decreases, the ballooned and swapped memory sizes increase almost linearly. There is
a	difference	between	the	ballooned	memory	size	and	the	swapped	memory	size.	In	the	ballooning	cases,	when	virtual	machine	
memory usage exceeds the specified limit, the balloon driver cannot force the guest operating system to page out guest physical
pages immediately unless the balloon driver has used up most of the free guest physical memory, which puts the guest operating
system under memory pressure. In the swapping cases, however, as long as the virtual machine memory usage exceeds the specified limit,
the extra amount of pages will be swapped out immediately. Therefore, the ballooned memory size is roughly equal to the virtual
machine memory size minus the specified limit, which means that the free physical memory is included. The swapped memory size
is roughly equal to the virtual machine host memory usage minus the specified limit. In the kernel compile virtual machine, since
most	of	the	guest	physical	pages	are	used	to	buffer	the	workload	files,	the	virtual	machine’s	effective	host	memory	usage	is	close	to	
the virtual machine memory size. Hence, the swapped memory size is similar to the ballooned memory size.

16

VMware white paper

5.3.2 Oracle/Swingbench
Figure 11	presents	the	throughput	of	an	Oracle	database	tested	by	the	Swingbench	workload	with	different	memory	limits	when	
using ballooning vs. swapping. The throughput is normalized to the case where virtual machine memory is not reclaimed.

Figure 11: Performance of Swingbench when using ballooning vs. swapping

0

0.2

0.6

0.4

0.8

1.0

1.2

0

500

1500

1000

2000

2500

3000

Ballooned size Swapped size Throughout (Balloon only)

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Ba
llo

on
ed

/S
w

ap
pe

d
M

em
or

y
(M

B)

Memory limit (MB)

3840 3584 3328 3072 2816 2560 2048 1792 15362304

Throughput (Swapping only)

As in the kernel compile test, using ballooning barely impacts the throughput of the Swingbench virtual machine until the memory
limit	decreases	below	2048MB.	This	occurs	when	the	guest	operating	system	starts	to	page	out	the	physical	pages	that	are	heavily	
reused by the Oracle database.

In contrast to using ballooning, using swapping causes significant throughput penalty. The throughput loss is already 17 percent
when	the	memory	limit	is	3584MB.	In	hypervisor	swapping,	some	guest	buffer	pages	are	unnecessarily	swapped	out	and	some	guest	
kernel or performance-critical database pages are also unintentionally swapped out because of the random page selection policy.
For the Swingbench virtual machine, the virtual machine host memory usage is very close to the virtual machine memory size, so the
swapped memory size is very close to the ballooned memory size.

17

VMware white paper

5.3.3 SPECjbb
Figure 12	presents	the	throughput	of	the	SPECjbb	workload	with	different	memory	limits	when	using	ballooning	vs.	swapping.	
The throughput is normalized to the case where virtual machine memory is not reclaimed.

Figure 12: Performance of SPECjbb when using the ballooning vs. the swapping

0

0.2

0.6

0.4

0.8

1.0

1.2

0

500

1500

1000

2000

2500

3000

Ballooned size Swapped size

Throughout (Balloon only)

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Ba
llo

on
ed

/S
w

ap
pe

d
M

em
or

y
(M

B)

Memory limit (MB)

3072 2816 2560 2304 2048 1792 1536

Throughput (Swapping only)

From	this	figure,	it	is	seen	that	when	the	virtual	machine	memory	limit	decreases	beyond	2816MB,	the	throughput	of	SPECjbb	
degrades	significantly	in	both	ballooning	and	swapping	cases.	When	the	memory	limit	is	reduced	to	2048MB,	the	throughput	losses	
are	89	percent	and	96	percent	for	ballooning	and	swapping	respectively.	Since	the	configured	JVM	heap	size	is	2.5GB,	the	actual	
virtual	machine	working	set	size	is	around	2.5GB	plus	guest	operating	system	memory	usage	(about	300MB).	When	the	virtual	
machine	memory	limit	falls	below	2816MB,	the	host	memory	cannot	back	the	entire	virtual	machine’s	working	set,	so	that	virtual	
machine	starts	to	suffer	from	guest-level	paging	in	the	ballooning	cases	or	hypervisor	swapping	in	the	swapping	cases.

Since SPECjbb is an extremely memory intensive workload, its throughput is largely determined by the virtual machine memory
hit rate. In this instance, virtual machine memory hit rate is defined as the percentage of guest memory accesses that result in host
physical memory hits. A higher memory hit rate means higher throughput for the SPECjbb workload. Since ballooning and host
swapping similarly decrease memory hit rate, both guest level paging and hypervisor swapping largely hurt SPECjbb performance.

Surprisingly,	when	the	memory	limit	is	2506MB	or	2304MB,	using	swapping	obtains	higher	throughput	than	that	of	using	ballooning.	
This seems to be counterintuitive because hypervisor swapping typically causes a higher performance penalty. One reasonable
explanation is that the random page selection policy used in hypervisor swapping largely favors the access patterns of the SPECjbb
virtual	machine.	More	specifically,	with	ballooning,	when	the	guest	operating	system	(Linux	in	this	case)	pages	out	guest	physical	
pages	to	satisfy	the	balloon	driver’s	allocation	request,	it	chooses	the	targets	using	an	LRU-approximated	policy.	However,	the	SPECjbb	
workload often traverses all the allocated guest physical memory iteratively. For example, the JVM garbage collector periodically
scans	the	entire	heap	to	free	memory.	This	behavior	is	categorized	to	a	well-known	LRU	pathological	case	in	which	the	memory	hit	
rate drops dramatically even when the memory size is slightly smaller than the working set size. In contrast, when using hypervisor
swapping, the swapped physical pages are randomly selected by the hypervisor, which makes the memory hit rate reduce more
gradually as the memory limit decreases. That is why using swapping achieves higher throughput when the memory limit is smaller
than	the	virtual	machine’s	working	set	size.	However,	when	the	memory	limit	drops	to	2304MB,	the	virtual	machine	memory	hit	rate	
is equivalently low in both swapping and ballooning cases. Using swapping starts to cause worse performance compared to using

18

VMware white paper

ballooning. Note that the above two configurations where swapping outperforms ballooning are rare pathological cases for ballooning
performance. In most cases, using ballooning achieves much better performance compared to using swapping.

Since	SPECjbb	virtual	machine’s	working	set	size	(~2.8GB)	is	much	smaller	than	the	configured	virtual	machine	memory	size	(4GB),	
the ballooned memory size is much higher than the swapped memory size.

5.3.4 Microsoft Exchange Server 2007
This section presents how ballooning and swapping impact the performance of an Exchange Server virtual machine. Exchange Sever
is a memory intensive workload that is optimized to use all the available physical memory to cache the transactions for fewer disk I/Os.

The Exchange Server performance was measured using the average Remote Procedure Call (RPC) latency during two hours stable
run.	The	RPC	latency	gauges	the	server	processing	time	for	an	RPC	from	LoadGen	(the	client	application	that	drives	the	Exchange	
server). Therefore, lower RPC latency means better performance. The results are presented in Figure 13.

Figure 13: Average RPC latency of Exchange when using ballooning vs. using swapping

0
12 11 10 9 8 7 6 5 4 3

3

2

1 20

4

5

6

7

8

Ballooning

4.6

5.9 6.1

6.85
7.3

Hypervisor Swapping

Av
er

ag
e

RP
C

la
te

nc
y

(m
s)

Memory limit (GB)
(a)

0
12 11 10 9

60

40

80

100

120

140

160

Hypervisor Swapping

4.6

143

x

Av
er

ag
e

RP
C

la
te

nc
y

(m
s)

Memory limit (GB)
(b)

7.48

Figure 13	(a),	illustrates	that	when	the	memory	limit	decreases	from	12GB	to	3GB,	the	average	RPC	latency	is	gradually	increased	from	
4.6ms to 7.3ms with ballooning. However, as shown in Figure 13 (b), the RPC latency is dramatically increased from 4.6ms to 143ms
when	solely	swapping	out	2GB	host	memory.	When	the	memory	limit	is	reduced	to	9GB,	hypervisor	swapping	makes	the	RPC	latency	
too	high,	which	resulted	in	the	failure	of	the	LoadGen	application	(due	to	timeout).	

Overall, this figure confirms that using ballooning to reclaim memory is much more efficient than using hypervisor swapping for the
Exchange Server virtual machine.

19

VMware white paper

6. Best Practices
Based	on	the	memory	management	concepts	and	performance	evaluation	results	presented	in	the	previous	sections,	the	following	
are some best practices for host and guest memory usage.

•	 Do not disable page sharing or the balloon driver. As described, page sharing is a lightweight technique which opportunistically
reclaims the redundant host memory with trivial performance impact. In the cases where hosts are heavily overcommitted, using
ballooning is generally more efficient and safer compared to using hypervisor swapping, based on the results presented in Section 5.3.
These two techniques are enabled by default in ESX4 and should not be disabled unless the benefits of doing so clearly outweigh
the costs.

•	 Carefully specify the memory limit and memory reservation. The virtual machine memory allocation target is subject to the
limit and reservation. If these two parameters are misconfigured, users may observe ballooning or swapping even when the host
has plenty of free memory. For example, a virtual machine’s memory may be reclaimed when the specified limit is too small or
when other virtual machines reserve too much host memory, even though they may only use a small portion of the reserved
memory. If a performance-critical virtual machine needs a guaranteed memory allocation, the reservation needs to be specified
carefully because it may impact other virtual machines.

•	 Host memory size should be larger than guest memory usage.	For	example,	it	is	unwise	to	run	a	virtual	machine	with	a	2GB	working	
set	size	in	a	host	with	only	1GB	host	memory.	If	this	is	the	case,	the	hypervisor	has	to	reclaim	the	virtual	machine’s	active	memory	
through ballooning or hypervisor swapping, which will lead to potentially serious virtual machine performance degradation.
Although it is difficult to tell whether the host memory is large enough to hold all of the virtual machine’s working sets, the bottom
line is that the host memory should not be excessively overcommitted making the guests have to continuously page out guest
physical memory.

•	 Use shares to adjust relative priorities when memory is overcommitted. If the host’s memory is overcommitted and the virtual
machine’s allocated host memory is too small to achieve a reasonable performance, the user can adjust the virtual machine’s shares
to escalate the relative priority of the virtual machine so that the hypervisor will allocate more host memory for that virtual machine.

•	 Set appropriate Virtual Machine memory size. The virtual machine memory size should be slightly larger than the average
guest memory usage. The extra memory will accommodate workload spikes in the virtual machine. Note that guest operating
system only recognizes the specified virtual machine memory size. If the virtual machine memory size is too small, guest-level
paging is inevitable, even though the host may have plenty of free memory. Instead, the user may conservatively set a very large
virtual machine memory size, which is fine in terms of virtual machine performance, but more virtual machine memory means
that more overhead memory needs to be reserved for the virtual machine.

7. references
[1]	Carl	A.	Waldspurger.	“Memory	Resource	Management	in	VMware	ESX	Server”.	Proceeding	of	the	fifth	Symposium	on	Operating	
System	Design	and	Implementation,	Boston,	Dec	2002.

[2] vSphere Resource Management Guide. VMware. http://www.vmware.com/pdf/vsphere4/r40/vsp_40_upgrade_guide.pdf

[3] Memory Performance Chart Statistics in the vSphere Client. http://communities.vmware.com/docs/DOC-10398

[4] VirtualCenter Memory Statistics Definitions. http://communities.vmware.com/docs/DOC-5230

[5] Performance Evaluation of Intel EPT Hardware Assist. VMware. http://www.vmware.com/resources/techresources/10006

[6] Performance Evaluation of AMD RVI Hardware Assist. VMware. http://www.vmware.com/resources/techresources/1079

[7]	The	buffer	cache.	http://tldp.org/LDP/sag/html/buffer-cache.html	

4 VMware Tools must be installed in order to enable ballooning. This is recommended for all workloads.

Understanding Memory Resource Management in VMware ESX Server
Source: Technical Marketing, SD
Revision: 20090820

http://www.vmware.com/pdf/vsphere4/r40/vsp_40_upgrade_guide.pdf
http://www.vmware.com/pdf/vsphere4/r40/vsp_40_upgrade_guide.pdf
http://communities.vmware.com/docs/DOC-5230
http://communities.vmware.com/docs/DOC-5230
http://www.vmware.com/resources/techresources/10006
http://www.vmware.com/resources/techresources/1079
http://tldp.org/LDP/sag/html/buffer-cache.html

VMware, Inc. 3401 Hillview Ave Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2009 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual
property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents.

VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other
marks and names mentioned herein may be trademarks of their respective companies. VMW_ESX_Memory_09Q3_WP_P20_R3

	1. Introduction
	2. ESX Memory Management Overview
	2.1 Terminology
	2.2 Memory Virtualization Basics
	2.3 Memory Management Basics in ESX

	3. Memory Reclamation in ESX
	3.1 Motivation
	3.2 Transparent Page Sharing (TPS)
	3.3 Ballooning
	3.4 Hypervisor Swapping
	3.5 When to Reclaim Host Memory2

	4. ESX Memory Allocation Management of Multiple Virtual Machines
	5. Performance Evaluation
	5.1 Experimental Environment
	5.2 Transparent Page Sharing Performance
	5.3 Ballooning vs. Swapping
	5.3.1 Linux Kernel Compile
	5.3.2 Oracle/Swingbench
	5.3.3 SPECjbb
	5.3.4 Microsoft Exchange Server 2007

	6. Best Practices
	7. References

